
n.可算性
Matin D. Davis, Computability, Complexity, and Languages, Academic Press, 1983. 《可計(jì)算性、復(fù)雜性和語(yǔ)言》,清華大學(xué)出版社,北京,1989。
This makes classical logic a special fragment of computability logic. 這使經(jīng)典邏輯成為可計(jì)算性邏輯的特殊片段。
Being semantically constructed, as yet computability logic does not have a fully developed proof theory. 正在做著語(yǔ)義構(gòu)造,至今可計(jì)算性邏輯仍沒(méi)有完全開發(fā)出證明論。
Models for mathematical (and philosophical) questions of computability (Turing,1936; Post). 數(shù)學(xué)或哲學(xué)和可計(jì)算性問(wèn)題模型。
The classical concept of truth turns out to be a special, zero-interactivity-degree case of computability. 真理的經(jīng)典概念轉(zhuǎn)變?yōu)榭捎?jì)算性的特殊的零交互度的情況。